5 resultados para 300201 Plant Biochemistry and Physiology

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant communities on weathered rock and outcrops are characterized by high values in species richness (Dengler 2006) and often persist on small and fragmented surfaces. Yet very few studies have examined the relationships between heterogeneity and plant diversity at small scales, in particular in poor-nutrient and low productive environment (Shmida and Wilson 1985, Lundholm 2003). In order to assess these relationships both in space and time in relationship, two different approaches were employed in the present study, in two gypsum outcrops of Northern Apennine. Diachronic and synchronic samplings from April 2012 to March 2013 were performed. A 50x50 cm plot was used in both samplings such as the sampling unit base. The diachronic survey aims to investigate seasonal patterning of plant diversity by the use of images analysis techniques integrated with field data and considering also seasonal climatic trend, the substrate quality and its variation in time. The purpose of the further, synchronic sampling was to describe plant diversity pattern as a function of the environmental heterogeneity meaning in substrate typologies, soil depth and topographic features. Results showed that responses of diversity pattern depend both on the resources availability, environmental heterogeneity and the manner in which the different taxonomic group access to them during the year. Species richness and Shannon diversity were positively affected by increasing in substrate heterogeneity. Furthermore a good turnover in seasonal species occurrence was detected. This vegetation may be described by the coexistence of three groups of species which created a gradient from early colonization stages, characterized by greater slope and predominance of bare rock, gradually to situation of more developed soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Root-yield-1.06 is a major QTL affecting root system architecture (RSA) and other agronomic traits in maize. The effect of this QTL has been evaluated with the development of near isogenic lines (NILs) differing at the QTL position. The objective of this study was to fine map qroot-yield-1.06 by marker-assisted searching for chromosome recombinants in the QTL interval and concurrent root phenotyping in both controlled and field conditions, through successive generations. Complementary approaches such as QTL meta-analysis and RNA-seq were deployed in order to help prioritizing candidate genes within the QTL target region. Using a selected group of genotypes, field based root analysis by ‘shovelomics’ enabled to accurately collect RSA information of adult maize plants. Shovelomics combined with software-assisted root imaging analysis proved to be an informative and relatively highly automated phenotyping protocol. A QTL interval mapping was conducted using a segregating population at the seedling stage grown in controlled environment. Results enabled to narrow down the QTL interval and to identify new polymorphic markers for MAS in field experiments. A collection of homozygous recombinant NILs was developed by screening segregating populations with markers flanking qroot-yield-1.06. A first set of lines from this collection was phenotyped based on the adapted shovelomics protocol. QTL analysis based on these data highlighted an interval of 1.3 Mb as completely linked with the target QTL but, a larger safer interval of 4.1 Mb was selected for further investigations. QTL meta-analysis allows to synthetize information on root QTLs and two mQTLs were identified in the qroot-yield-1.06 interval. Trascriptomics analysis based on RNA-seq data of the two contrasting QTL-NILs, confirmed alternative haplotypes at chromosome bin 1.06. qroot-yield-1.06 has now been delimited to a 4.1-Mb interval, and thanks to the availability of additional untested homozygous recombinant NILs, the potentially achievable mapping resolution at qroot-yield-1.06 is c. 50 kb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat loss and fragmentation have a prominent role in determining the size of plant populations, and can affect plant-pollinator interactions. It is hypothesized that in small plant populations the ability to set seeds can be reduced due to limited pollination services, since individuals in small populations can receive less quantity or quality of visits. In this study, I investigated the effect of population size on plant reproductive success and insect visitation in 8 populations of two common species in the island of Lesvos, Greece (Mediterranean Sea), Echium plantagineum and Ballota acetabulosa, and of a rare perennial shrub endemic to north-central Italy, Ononis masquillierii. All the three species depended on insect pollinators for sexual reproduction. For each species, pollen limitation was present in all or nearly all populations, but the relationship between pollen limitation and population size was only present in Ononis masquillierii. However, in Echium plantagineum, significant relationships between both open-pollinated and handcrossed-pollinated seed sets and population size were found, being small populations comparatively less productive than large ones. Additionally, for this species, livestock grazing intensity was greater for small populations and for sparse patches, and had a negative influence on productivity of the remnant plants. Both Echium plantagineum and Ballota acetabulosa attracted a great number of insects, representing a wide spectrum of pollinators, thereby can be considered as generalist species. For Ballota acetabulosa, the most important pollinators were megachilid female bees, and insect diversity didn’t decrease with decreasing plant population size. By contrast, Ononis masquillierii plants generally received few visits, with flowers specialized on small bees (Lasioglossum spp.), representing the most important insect guild. In Echium plantagineum and Ballota acetabulosa, plants in small and large populations received the same amount of visits per flower, and no differences in the number of intraplant visited flowers were detected. On the contrary, large Ononis populations supported higher amounts of pollinators than small ones. At patch level, high Echium flower density was associated with more and higher quality pollinators. My results indicate that small populations were not subject to reduced pollination services than large ones in Echium plantagineum and Ballota acetabulosa, and suggest that grazing and resource limitation could have a major impact on population fitness in Echium plantagineum. The absence of any size effects in these two species can be explained in the light of their high local abundance, wide habitat specificity, and ability to compete with other co-flowering species for pollinators. By contrast, size represents a key characteristic for both pollination and reproduction in Ononis masquillierii populations, as an increase in size could mitigate the negative effects coming from the disadvantageous reproductive traits of the species. Finally, the widespread occurrence of pollen limitation in the three species may be the result of 1) an ongoing weakening or disruption of plantpollinator interactions derived from ecological perturbations, 2) an adaptive equilibrium in response to stochastic processes, and 3) the presence of unfavourable reproductive traits (for Ononis masquillierii).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of soil incorporation of 7 Meliaceae derivatives (6 commercial neem cakes and leaves of Melia azedarach L.) on C and N dynamics and on nutrient availability to micropropagated GF677 rootstock was investigated. In a first laboratory incubation experiment the derivatives showed different N mineralization dynamics, generally well predicted by their C:N ratio and only partly by their initial N concentration. All derivatives increased microbial biomass C, thus representing a source of C for the soil microbial population. Soil addition of all neem cakes (8 g kg-1) and melia leaves (16 g kg-1) had a positive effect on plant growth and increased root N uptake and leaf green colour of micropropagated plants of GF677. In addition, the neem cakes characterized by higher nutrient concentration increased P and K concentration in shoot and leaves 68 days after the amendment. In another experiment, soil incorporation of 15N labeled melia leaves (16 g kg-1) had no effect on the total amount of plant N, however the percentage of melia derived-N of treated plants ranged between 0.8% and 34% during the experiment. At the end of the growing season, about 7% of N added as melia leaves was recovered in plant, while 70% of it was still present in soil. Real C mineralization and the priming effect induced by the addition of the derivatives were quantified by a natural 13C abundance method. The real C mineralization of the derivatives ranged between 22% and 40% of added-C. All the derivatives studied induced a positive priming effect and, 144 days after the amendment, the amount of C primed corresponded to 26% of added-C, for all the derivatives. Despite this substantial priming effect, the C balance of the soil, 144 days after the amendment, always resulted positive.